A recommender agent based on learning styles for better virtual collaborative learning experiences
نویسندگان
چکیده
Almost unlimited access to educational information plethora came with a drawback: finding meaningful material is not a straightforward task anymore. Based on a survey related to how students find additional bibliographical resources for university courses, we concluded there is a strong need for recommended learning materials, for specialized online search and for personalized learning tools. As a result, we developed an educational collaborative filtering recommender agent, with an integrated learning style finder. The agent produces two types of recommendations: suggestions and shortcuts for learning materials and learning tools, helping the learner to better navigate through educational resources. Shortcuts are created taking into account only the user’s profile, while suggestions are created using the choices made by the learners with similar learning styles. The learning style finder assigns to each user a profile model, taking into account an index of learning styles, as well as patterns discovered in the virtual behavior of the user. The current study presents the agent itself, as well as its integration to a virtual collaborative learning environment and its success and limitations, based on users’ feedback. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملThe Effect of Training in Virtual Environment on Nursing Students Attitudes toward Virtual Learning and its Relationship with Learning Style
Introduction: It is impossible to be successful in virtual training unless we consider individuals’ viewpoints toward it. Despite this fact, less attention has been paid to students’ attitudes at the end of a virtual course in the published studies. This study investigates the effect of a virtual training course on the students` attitudes toward virtual education and its relationship with learn...
متن کاملHybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملA Multi-Agent Question-Answering System for E-Learning and Collaborative Learning Environment
The increasing advances of new Internet technologies in all application domains have changed life styles and interactions. E-learning and collaborative learning environment systems are originated through such changes and aim at providing facilities for people in different times and geographical locations to cooperate, collaborate, learn and work together by using various educational services. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in Human Behavior
دوره 45 شماره
صفحات -
تاریخ انتشار 2015